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Analysis of the relative noise performance of many types of pulse-shaping systems is discussed in terms of recent work on noise anal- 
ysis. The simplicity of the method, and its direct connection to physical processes, is stressed. Applications of the technique to time- 

variant as well as time-irtvariant systems are illustrated. 

1. Introduction 
A very simple approach to the problem of comparing 

the noise behavior of  various pulse-shaping networks 
used in low-noise nuclear pulse-amplifiers has evolved 
in the past five years. Notable contributors to this 
approach include Amsel et al.l), Radeka et al.2'a), and 
Deighton4). The method rests on an elementary physi- 
cal picture of  noise; as the analysis is carried out com- 
pletely in the time domain, intuitive comparisons 
become possible between various pulse-shapes, and the 
effects of  changing parameters can readily be calculated. 
Furthermore, the range of  shaping techniques that can 
be analyzed is far greater than could conveniently be 
handled by earlier methods. In particular, shapers 
containing time-variant elements can be studied. 

Unfortunately, the power of  the technique has 
escaped the notice of  many physicists and engineers 
working with pulse-amplifiers. This paper represents 
an at tempt to express the ideas involved in the method 
simply, while avoiding the specialized terms of infor- 
mation theory, so that a clearer physical picture of  the 
parameters controlling noise emerges. 

Various considerations enter into the choice of  a 
pulse-shaping network in a nuclear pulse-amplifier. 
These include: 

1) Signal/noise performance. 

2) Counting-rate behavior. 

3) Sensitivity to rise-time fluctuations of  the input 
signal. 

4) Suitability of  the output pulse-shape for feeding 
a pulse-height analyzer. 

The relative emphasis on these various factors should 
depend on the application. For  example, low-energy 
X-ray spectroscopy using silicon detectors places most 
emphasis on (1), but (2) can also be very important.  
However, for large germanium ),-ray detectors used to 
measure high-energy ),-rays, (1) is less important,  as the 

spectral line-width may depend more on detector 
charge-production statistics than on electronic noise. 
In this case, detector signal rise-time fluctuations may 
be the critical factor. It is therefore important to be 
able to assess the effect on the signal-to-noise ratio of  
using a pulse-shaper whose output is rather indepen- 
dent of  input signal risetime. To make an opt imum 
choice of  pulse-shaper for a given application one must 
assess the trade-offs among all four factors. No single 
pulse-shaper is best f rom all points of view. 

2. Noise sources 

Fundamental noise sources of  at least two types 
exists in all low-noise nuclear pulse amplifiers, where 
a very high input impedance is used to match high 
impedance radiation detectors. The first arises from 
the discrete electronic nature of any current flowing in 
the input circuit of the preamplifier. Grid-current in a 
vacuum tube, gate-current in a field-effect transistor, 
and leakage-current in a detector all constitute sources 
of  this type. The second fundamental noise type is 
that due to the discrete electronic nature of  the current 
flowing through the input and later amplifying ele- 
ments (i.e. later than the input circuit). 

Distinction between the two types of  noise is made 
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Fig. 1. Fundamental noise sources in a preamplifier. 
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because the charge due to electron flow in the input 
circuit is integrated by the input circuit capacitance 
(including detector), to appear as tiny voltage steps at 
the input to the preamplifier (see fig. l). We will call this 
STEP NOISE. On the other hand, flow of an electron 
through the input amplifying device produces only a 
short delta pulse of current in the output circuit; an 
equivalent circuit to represent noise due to this 
process is a delta-function voltage generator in series 
with the input circuit. We will call this DELTA NOISE. 
As shown in fig. 1, the two noise sources combine as 
two randomly varying voltages in series with the 
input electrode of  the amplifying element. One is the 
summation of a random time-series of steps, while the 
other is the summation of a similar series of deltas. 

For the purpose of  this paper we make the following 
reasonable assumptions: 

1) Individual electrons causing each type of noise 
occur at random times with a mean interval between 
electrons very much shorter than the pulse-shaping 
times used in the amplifier. The space-charge smoothing 
effect in a vacuum tube is one well known reason for 
deviation from a truly random distribution. Further- 
more, input circuit leakage currents below I0-14A 
are not uncommon, so, in a typical pulse-shaping time 
(,-~ 10/tsec), an average of just about a single leakage- 
current electron will flow in the input circuit. This is 
certainly not enough to justify the application of 
normal statistics, but, when averaged over a large 
number of signal pulses, one might expect to observe 
the same spectral line-broadening as is predicted by 
normal statistics. Despite these factors, the spectral 
line-width in a spectrometer should differ only slightly 
from the value we calculate. 

2) We assume that only step- and delta-noise are 
present. Many well-known noise sources, including 
flicker-noise in vacuum tubes, surface-noise in semi- 
conductor components, and excess-noise in resistors, 
cannot be represented by step- or delta-functions at the 
amplifier input. The primary noise source in these cases 
will be equivalent to a step generator coupling to the 
input circuit via distributed networks. These excess- 
noise generators, which are virtually impossible to 
predict, can be made almost negligible by selecting 
components producing only low levels of excess noise. 
Our assumption that only step- and delta-noise types 
are present is then a reasonable approximation to the 
truth. 

3) The discrete noise events at the amplifier input are 
assumed to correspond to the same amount of charge 
flow. For step-noise this means that the voltage steps 
at the input due to leakage-current electrons are all 

equal. For delta-noise it implies that the delta functions 
produced by the equivalent noise generator (fig. 1) are 
all of  the same area. This assumption may sometimes 
be inval id-  for example, the thermal generation of a 
hole-electron pair in a semi-conductor detector produ- 
ces a charge flow in the external circuit which is the sum 
of hole- and electron-drift components. If  either carrier 
is trapped for a long time, the prompt noise signal is 
reduced below its single-electron value. For the purpose 
of  analysis we could separately consider groups of 
noise pulses, each group having a certain amplitude, 
the sum their effects on the signal. I f  the pulses in each 
group constitute a random time sequence, the same 
general result will be obtained as is produced by con- 
sidering only a single group of one size. It therefore 
appears that this assumption is reasonably valid for the 
purposes of our analysis. 

3. Analysis method 

Any calculation of absolute noise levels in an 
amplifier demands a detailed knowledge of  the physical 
processes involved in the circuit elements. Fortunately, 
our intention here is to make only a comparative 
evaluation of the noise performance of various pulse- 
shapers, and it is not necessary to consider details of 
the physical processes responsible for causing the noise. 
We therefore make only the simple assumption that an 
average number of single-electron step-functions 
(nUsec) and of delta-functions (n~/sec) are produced in 
the input circuit by the noise sources. The signal from 
the detector is assumed to be a charge-pulse producing 
a step-function voltage signal at the input of the pre- 
amplifier. 

Fig. 2 shows the complete signal processing chain. In 
time-invariant (passive) pulse-shapers, both signal and 
noise are processed by a pulse-shaper (sometimes 
called a noise filter) to produce the best possible 
signal/noise ratio at the output. We note that, in this 
case, individual noise steps are shaped by the pulse- 
shaper in exactly the same way as the signal-indepen- 
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dent of the arrival time of the noise step. However, in 
time-variant systems, where the pulse-shaper elements 
change value in synchronism with the signal (path 
shown in dotted line in fig. 2), the effect of the pulse- 
shaper on noise steps (and deltas) depends on their 
time of arrival with reference to signal pulses. 

In our analysis we assume that the output signal 
amplitude is measured at a fixed time Tm on the signal. 
The amplitude measured for a given signal is equal to 
the true signal amplitude plus (or minus) the cumulative 
effect of  all noise-steps occurring before Tin- TO deter- 
mine this effect we must define a STEP-NOISE 
RESIDUAL FUNCTION* R(t) that represents the 
residual effect at Tm of a single unit-amplitude noise 
step occurring t seconds prior to T m. R(t) can be 
determined analytically if the shaping network para- 
meters are known, or can be measured by injection of 
a step-function into the system input at variable times 
earlier than Tin, while measuring the response at Tm. 

Now we suppose that unit amplitude noise steps 
occur at a rate ns/sec. In any selected short time interval 
dt, the number of noise steps cannot be predicted, but 
two things are known about the number: 

1) If  we count the number N of noise steps occurring 
in each of many time increments dt, the average of  
the numbers obtained will be nsdt. Therefore 

= n~dt. 

2) The mean square fluctuation (n 2) in N will be 
given by: 

(n  2) = n~dt. 

But each npise step in a time increment dt occurring tl 
seconds prior to the measurement time Tm of a signal 
produces a response R(tO at the measurement time. 
Therefore, if a large number of signals is measured, 
the mean square effect on the amplitude determination, 
due to noise in time elements dt occurring tl seconds 
prior to each signal measurement time, is equal to: 

(n2)  • [R(t l )]  2 = n~ [R(t , ) ]  2 dt.  

The total mean square effect of all noise steps prior to 
T m is obtained by summing the mean square effects 
for all values of t l :  

Total mean square step noise effect at Tm 

= n~ [R(t)-[ 2 dt.  

It will be useful to define a step-noise index that 

* Radeka a) uses the term "Weight ing Function ". 

contains only those parameters determined by the 
pulse-shaper. As ns is independent of the shaper it will 
be omitted from the index, but the signal amplitude S 
(i.e. response to a unit-step input signal), which depends 
on the shaper, must be included. As the factor of 
importance is the ratio of mean square noise to the 
square of signal amplitude, our step-noise index will 
be defined as: 

STEP NOISE (N  2) = ~ [R (0] 2 dt.  (1) 

A similar noise index can be developed for delta- 
noise. Each delta-noise pulse is assumed to be of dura- 
tion At, where At is very short compared to any time- 
constant involved in the pulse-shaper, and the area 
of  the delta is assumed to have a fixed value. These 
assumptions about the delta-pulse generator of fig. 1 
corresponds physically to a single electron flowing 
through the input amplifying element in a transit-time 
At. The delta-function can be considered as a positive 
step-function of  amplitude proportional to l/At, fol- 
lowed A t later by a negative step function of the same 
amplitude. If  the noise pulse precedes T m by t, its 
effect at Tm will be given by 

1 [R(t)-R(t-At)] .  
At 

For At ~ 0  this function is the differential of R(t), and 
we can define it as the DELTA-NOISE RESIDUAL 
FUNCTION R'(t). Proceeding exactly as for step- 
noise, the delta-noise index can be defined as: 

,fo DELTA NOISE (N  2) = ~ JR'(0]  2 dt.  (2) 

It is important to realize that the entire effect of a 
pulse-shaper on noise is contained in eqs. (1) and (2). 
Once R(t) and S are established for various pulse- 
shapes, evaluation of their relative noise performance 
is simply a matter of evaluating the indices ( N  2) and 
(N2) .  The fact that R' (t) appears in eq. (2), while R(t) 
appears in eq. (1), implies that (N~ 2) is always dimen- 
sionally different from ( N  2) by a factor of  (time) 2. 

4. Examples of method 

Discussion of a few simple examples that can be 
represented graphically will demonstrate the power of 
the method. These examples will point out a number of 
general conclusions concerning the noise performance 
of pulse shapers. 
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4.1. TIME-INVARIANT TRAPEZOIDAL PULSE-SHAPER 

The example chosen first is a shaper developing the 
asymmetrical trapezoidal output pulse shown in the top 
illustration of  fig. 3. Circuit details involved in the 
shaper need not be known except that all components 
must be linear, and, in this case, time-invariant. Fig. 3 
contains a graphical development of  the functions 
required to evaluate the noise indices. 

Derivation of  the function R(t) is the key step in 
calculating the noise indices. In this case it is very 
simply derived by considering the effect at Tm of a unit- 
step input occurring at t before Tm, then plotting this 
effect as a function of t. Note that R(t) is the same 
shape as the signal response in this case. This is always 
true for time-invariant (passive) shapers, but is never 
true for time-variant shapers, where the shaping of 
noise pulses depends on their time relationship to the 
signal. 

Once R (t)is developed, [R(t)] 2, R' ( t )and [R' (t)] 2 are 
readily derived. The area beneath [R(t)] 2, shown in the 
lower left illustration of fig. 3, determines the step-noise 
index (N2) ,  since we have normalized to a signal 
amplitude S =  1. The area beneath [R(t)] 2 is propor- 
tional to the total time z l + z 2 + z  3 occupied by the 
pulse, if the ratios zl/r2 and 1:2/l" 3 a r e  maintained 
constant. The general conclusion that STEP NOISE 
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Fig. 3. T ime- invar ian t  t rapezoida l  pulse-shaper .  

is proportional to the pulse time-scale* follows from 
this simple observa t ion- i t  applies to all shaping 
networks. 

The DELTA RESIDUAL FUNCTION R'(t) is 
easily derived from R(t) and is shown in the right half 
of fig. 3. Since R(t) must return to its baseline, the 
positive and negative areas of R'(t) must be equal. It 
follows that the area under [R'(t)] 2 in the bottom right 
illustration is dominated by the z 3 part of the function. 
This means that DELTA NOISE is determined largely 
by the region of the signal-response where the rate-of- 
change is a maximum. We also note that the flat 
portion of the signal response contributes no delta 
noise, and that the area under [R'(t)] 2 is inversely pro- 
portional to the time scale of the signal response. 

We have: 
STEP NOISE 

;o ( N ~ ) = J  ° LrZ) dr+ (1)Zdt+ - -  dt dO \'rl/ 
= "f..33 ..]_ ~2 "[- T1 = ~2 "[- ('t 'l -]- 2 7 3 - ' ' ' ' ~ )  " 

3 3 3 
(3) 

DELTA NOISE 

("3/1 \2 ('~'//1 \ 2 1 1 

(N]) =Jo t--) at +Jo Lz-~l) at = - -+- - .  (4) 
"L'3 '['1 "L'3 

Counting-rate considerations usually dictate a maxi- 
mum duration for the signal (i.e. z 1 -FT2-+-Z 3 must be 
smaller than a certain value). Also, the sensitivity of 
output amplitude to detector signal rise-time is related 
to the duration z2 of the fiat-top on the output pulse - 
the longer z2, the less the sensitivity. If  we define a 
maximum signal duration Ts, and demand a flat-top 
duration T F, eqs. (3) and (4) show that the best shape 
is that for which z, = T 3 = ½(T s -  TF) .  

The noise indices are then given by: 

(N~)  = ½(2 T r +  T~), (5) 

( N i )  = 4 (6) 
Ts- TF" 

When we generalize from these conclusions, the 
following rules are clear: 

1) STEP NOISE is proportional to the time-scale 
of the pulse-shape. 

2) DELTA NOISE is inversely proportional to the 
time-scale. 

* The  t e rm " t i m e - s c a l e "  will be used in m a n y  places  in this paper .  
Fo r  a given pu lse -shape  a change  in t ime-scale  impl ies  a p ro-  
po r t i ona t e  change  in all t ime segments  of  the  pulse-shape .  
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3) For a fixed total signal duration, best results are 
achieved by making the pulse shape symmetrical. 

4) While a flat region on a signal does not directly 
contribute to DELTA NOISE, it does result in an 
increase in the signal rate-of-rise in other portions 
of the pulse if the total pulse-width is fixed. It 
thereby indirectly increases DELTA NOISE, as 
well as affecting STEP NOISE, for a fixed total 
pulse-width. 

4.2.  EQUAL RC INTEGRATOR--DIFFERENTIATOR 

The signal (step) response of a pulse shaper con- 
taining a single RC differentiator, and an RC integrator 
with the same RC value, is given by: 

output = t e(l_,/~o ) 
-c o 

where t is the time, % is the peaking time, and the peak 
amplitude is unity (see fig. 4). As in the previous 
example, R(t) is the same as the signal response. 

Proceeding immediately to the noise indices given 
in eqs. (1) and (2), and normalizing to a signal ampli- 
tude S = 1: 

Also, 

STEP NOISE 

= I °° t 2 
_ _  e20-t/,o) dt 

() _ e 2 z o  oo 2 t  e-2(t/'°)d 2 t  

8 \ Z o /  ~o 

_ e zzo _ 1 .87%. 
4 

R,(t)=e~e- ' /~° t 1 
• % 

(7) 

DELTA NOISE 
e 2 oo (N])=~fole-2*/*°(l 
e 2 1.87 

4 % Zo 

+ 

(8) 

Eqs. (7) and (8) can be compared directly with eqs. (5) 
and (6) to show the differences between the RC 
integrator-differentiator and the trapezoidal shapers. 
To simplify the comparison, we can make the flat-top 
(TF) zero, thereby producing a triangular waveform. 
If  we make Ts = 2Zo, so that the peak of  the triangle 

occurs at the same time as the peak of  the RC shaped 
pulse, we have: 

( N  2) = 0.667 Zo, 

Triangular shaper 
(N~)  = 2/Zo ; 

RC integ, diff. 
(Ns 2) = 1.87Zo, 

(N  2) = 1.87/%. 

This shows that the noise index for the symmetrical 
triangular shape is slightly worse for delta-noise, but 
much better for step-noise -assuming the same peaking- 
time. The triangle returns to its baseline much earlier 
than the other waveform. Optimum choice of the 
peaking-time of either waveform depends on the 
relative magnitudes of n~ and n~, which depend on the  
characteristics of input circuit elements. If  ns is very 
small, delta-noise tends to be dominant; we can then 
increase the time-scale for the triangle so that its 
performance becomes superior to the RC integrator- 
differentiator both in regard to step- and delta-noise, 
while also exhibiting better counting-rate performance. 
Provision of a fiat-top results in a trapezoidal shape 
much superior in regard to lack of sensitivity to detector 
signal rise-time variations. 

These examples illustrate the simplicity of the 
method as a tool to compare the behavior of very 
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Fig. 4. Equal RC integrator-differentiator. 
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different time-invariant pulse-shapers. The effects of 
changes in symmetry of the trapezoid, and in the 
duration of its flat-top can easily be calculated-this is in 
contrast to more conventional methods of analysis. The 
two examples also illustrate the ability of the method 
to analyze shapers producing waveforms expressible 
in purely analytical form (4.2), or ones that must be 
treated by piecewise integration (4.1). We will now 
examine its application to some time-variant systems of 
different degrees of complexity. 

4.3. GATED-INTEGRATOR TRAPEZOIDAL PULSE-SHAPER 

This simple time-variant system consists of a shaper 
(see fig. 5), producing a rectangular pulse of duration T, 
feeding a gated-integrator switched on at the start of 
the signal to integrate the rectangular pulse for a time 
Tv At the end of T~, the integrator output is rapidly 
restored to zero by shorting out the integrating capa- 
citor. The output signal consists of a ramp rising 
linearly for the time T, followed by a flat-top until the 
end of the integration period. As pointed out by 
Radeka3), the resulting pulse is insensitive to detector 
signal rise-time variations as long as they occur in a 
time smaller than T x-  T. 

In this case, the step-noise residual function R( t )  
is not the same as the output signal. The function R(t )  
is generated by determining the overlapping area of 

T 
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Fig. 5. Gated-integrator trapezoidal pulse-shaper. 

the rectangular pulse of width T with the integration 
period T,, for the whole possible range of times between 
the start of the pulse and measurement time T m. 
Graphically, one can imagine sliding the rectangular 
pulse through the region of integration, then computing 
the area of intersection between T and T, for each 
position of the pulse. We then have: 

STEP N O I S E  

ioo IT ffTl- T ( N 2 ) =  [ R ( t ) ] Z d t = 2  ( t ~ e d t  + | (1) 2dr 
o jo \ T /  .1o 

T 
= ~ T+ T, - T= T~- -- .  (9) 

3 

DELTA N O I S E  

( N  2) = [R'(t)]2dt = 2 dt = T (1o) 

To illustrate the potential value of this type of pulse- 
shaper we will compare it directly with a simple time- 
invariant trapezoidal pulse-shaper, using typical values 
for the time parameters. The following requirements 
will be placed on each system: 

a) Total dead time = 2 psec (i.e. all signal pulses in 
the system must return to the baseline in 2 psec). 

b) The duration of the flat-top must be 0.2 psec. 
Using the relationships (5) and (6) for the time-invariant 
trapezoidal shaper, and (9) and (10) for the gated 
integrator we have: 

Time-invariant (N2) = 0.8, 

trapezoidal shaper (N2)  = 2.22 ; 

Gated-integrator (N 2) = 1.4, 

trapezoidal shaper (N2) = 1.11. 

The gated-integrator delta-noise index is considerably 
better, and its step-noise index worse than the equi- 
valent quantities for the time-invariant shaper. For 
short shaping-times, step-noise is usually negligible 
compared with delta-noise, and the spectral line-width, 
or at least that part contributed by noise, should be 
better by a factor of almost x/2 when the gated inte- 
grator is used instead of the time-invariant pulse- 
shaper. This result is achieved while retaining equally 
good counting-rate behavior and the same insensitivity 
to detector signal rise-time. Alternatively, by making 
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the time-scale of  the gated-integrator system one half 
that used for the time-invariant pulse-shaper, the 
counting rate performance is improved, while the 
delta-noise index is the same for the two systems. 

Radeka 3) points out the problems involved in 
achieving the rectangular pulse-shape used to drive the 
gated-integrator. To circumvent this difficulty, he uses 
a Gaussian pulse-shape, produced by a single RC 
differentiator, and multiple RC integrators, to approxi- 
mate the rectangular pulse-shape. Analysis of this case 
is somewhat more laborious, so we will delay it to give 
consideration to a more sophisticated type of  time- 
variant filter. 

4.4. GATED-INTEGRATOR TRAPEZOIDAL PULSE-SHAPER 

WITH TIME-VARIANT DIFFERENTIATOR 

It is interesting to consider a relatively simple modi- 
fication of the scheme of the previous example: we 
switch the differentiator that determines the pulse- 
width into the gated-integrator so that the pulse-width 
has a small value T 1 when no signal is present, but 
changes to the value T (as in example 4.3) at the arrival 
of  a signal and until the end of the integration period. 
At first sight it may appear that the shorter step-noise 
pulse-width prior to signal arrival might reduce noise, 
but we will see that this is certainly not so for delta- 
noise. 

We choose to examine this type of system because 
it has possible value in permitting only short pulses in 
the amplifier, except when the normal value is necessary 
for signal processing. If  detector pulses are present at a 
high rate, as during the beam burst of an accelerator, 
keeping the pulse-widths in the system very short 
prevents overload and recovery problems. It is there- 
fore important to evaluate the noise penalty paid for 
switching the pulse-forming circuit. 

In this case, it is necessary to discuss the details of 
the circuit used to shape the square pulse into the gated- 
integrator. In general, time-variant differentiators must 
be treated as individual cases, and the analysis must 

be carried out carefully to avoid pitfalls. General con- 
clusions are difficult to determine, but we have chosen 
the particular circuit of fig. 6 to illustrate some aspects 
of switched-differentiator performance. The step- 
function signal splits into two paths, such that a 
delayed version of the signal is subtracted from the 
signal itself to produce the pulse into the gated-integra- 
tor. The delay is determined by a delay-line whose 
value is changed from T z when no signal is present to T 
when a signal occurs. The change in delay is not made 
instantaneously, but rather over a short time AT-  
assumed to be much smaller than T z -  the change 
starting immediately on arrival of the signal. 

Fig. 7 shows the various functions appropriate here. 
Construction of the diagram of the step-noise residual 
function R(t) is more difficult in this case than in the 
earlier examples. As we look back from the measure- 
ment time Tm, noise steps occurring after the signal 
arrival time (i.e. within T I prior to Tm) will be treated 
exactly as in example 4.3, since they produce pulses of 
width T into the gated integrator. Due to the delay in 
delay-line T1, the same behavior will apply to noise- 
steps occurring in the interval (T~-At) prior to the 
start of the signal, since by the time the signal wave 
reaches the junction of the two delay lines, the signal 
pick-off point will have moved to the end of the second 
delay line. However, noise steps occurring prior to the 
start of the signal by more than T 1 will produce pulses 
only T~ long, and they will not overlap the time period 

SIGNAL PULSE T ME 
SHAPE 

INTO INTEGRATOR D, TIME 
(FORWARD) 

OUTPUT SIGNAL 

1 V  [ __ TIME TRy(t) 1(FORWARD) 

rT f½ 
t ] T - . ,  

TIME FROM Tm (BACKWARD) 

Fig. 7. Gated- in tegra tor  trapezoidal pulse-shaper  with t ime- 
var iant  differentiator. 
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when the gated integrator is active. Consequently R(t) 
is as shown in fig. 7. 

Since the area under R(t) is substantially smaller 
in this case than in case 4.3 (fig. 5), it is clear that the 
step-noise is better. However, the behavior of  R'(t) 
leads to a large increase in delta-noise (which is partic- 
ularly important in modern low-noise amplifiers used 
at short shaping-times). As the total area of R'(t) must 
be zero, [R'(t)] 2 is dominated by the large switching 
spike in R'(t), which results in a very large increase in 
delta-noise. 

We have: 

STEP NOISE 

(N~)  = [R(t)] 2 dt 

(T(L'~2dt-{- fTI-T fT (t) 2 
' ~  ( 1 )  2 dt + dt 

.Io \ T /  jo -r,  T 

T T 1 
~- -- + TI- 3 3 T 2(T-T1)3 

TI T T [1 _ .:._~]a " [ T , ' ~  (11) 
3 3 \ T /  

DELTA NOISE 

( N  2) = JR' (0]  2 dt 

= dt + - -  dt 
dO T 2 

f:t 1 ( T~TAt)2 + - -  1 dt 
At 2 

T1-AtT 2 1 ( T1TAt)2 = 1 +  + 1 -- 
I 

If A t ~ 7"1, then 

1 +7"1 1 ( T - T O  
(N2) = T T 2 q At T 

The last term in this expression will normally be 
dominant, so: 

( U ] )  _ (1 - y , / y )  (12) 
At 

For example, if T = l . 8  psec, T1 =0.2psec ,  At= 
= 50 nsec, then 

( N ] )  -~ 18. 

This compares with the value of (NA 2) = 1.1 1 for the 
simple gated-integrator for T = 1.8 #sec and T~=2psec. 

Two aspects of this analysis are of great practical 
interest: 

1) It is clear from the foregoing analysis that the 
severity of the penalty in delta-noise produced by the 
time-variant differentiator is proportional to the 
switching speed of the differentiator (i.e. oc 1~At). In 
practice, slow changes of circuit parameters are not 
easy to achieve. However, a little thought about the 
function R(t) shows that we can achieve the same 
effect by using a RC integrator in the circuit preceeding 
the differentiator. Therefore, even if the differentiator 
is switched instantaneously, integration in the early 
stages limits the increase in delta-noise. 

2) Possibly the major interest in switched-differen- 
tiators occurs in pulsed-beam accelerator applications, 
where reducing the differentiation time prevents over- 
load, and speeds-up recovery following the end of  the 
beam pulse. In this case, the differentiator may be 
switched to its normal value T at the end of the beam 
burst. It is then of interest to determine the time period 
following this operation during which a noise penalty 
occurs. A little thought about the function R(t) shows 
that the penalty diminishes steadily for a time T after 
the end of  the beam burst, and that noise performance 
for signals starting at times later than T after the end 
of the burst is the same as for the simple gated- 
integrator system. 

4.5. BIPHASE-PULSE FOLLOWED BY A 

GATED INTEGRATOR 

In case 4.1 we considered a time-invariant trapezoidal 
pulse-shaper. The symmetrical triangle can be con- 
sidered as a special case of this, and its noise indices, 
derived from eqs. (3) and (4) by substituting z 2 = 0, 
T 1 = T 3 = T, are: 

(N  2) = ~-z, (13) 

(N  2) = 2/z, (14) 

where z = the peaking time of  the triangle. 

This triangular response can be obtained by deve- 
loping a biphase pulse with each half having a dura- 
tion z, and feeding it into an integrator. The signal 
response remains the same whether the integrator is in 
continuous operation or is opened only for the duration 
of the biphase pulse, but the noise behavior expressed by 
eqs. (13) and (14) applies only to the ungated integrator. 
The noise performance is quite different when the 
integrator is switched in only for the signal time, 
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SIGNAL INTO "-~q" 
GATED INTEG. ~ _ _  

GATEDooT,.,T, NT'. , .EA Z &MENT 
r l " ---- t ( F O R W A R D )  

1..~ R(t) q" , R'(t) 

q" T 3¢ 
- L  

,f 

I 

TIME (BACKWARD FROM Tm 
FOR R(t) , lR(t) l  2, R/ ( t ) , {R/ ( t ) I  ' 

Fig. 8. Biphase pulse followed by a gated-integrator .  

despite the fact that the final output signal looks 
precisely the same. 

Fig. 8 shows R(t), and the derived functions, for the 
case of the switched integrator. We have: 

STEP NOISE 

j o  j o \ ' ~ /  ,1o \ ' c  / 

2 T  T 
= - -  + -  = ~ .  ( 1 5 )  

3 3 

DELTA NOISE 

L <N~> = [R'(t)]:dt = _ 2 + 4 _ 6 (16) 
T T T 

Comparing these results with eqs. (13) and (14), it is 
apparent that the switching operation associated with 
the gated-integrator has substantially degraded both 
step- and delta-noise. This result has been presented 
to show that care must be exercised in changing circuit 
parameters in synchronism with signals, or a severe 
penalty in noise may result. 

5. Digital calculations of more complex cases 

The analysis technique described here involves only 
very simple integrations in the time domain, and the 
integrations can readily be broken down into con- 

venient pieces as illustrated in the examples in the 
previous section. These examples were chosen to use 
relatively simple pulse-shapes to simplify the descrip- 
tion of the technique, but the method can equally well 
be applied to a very wide range of pulse-shapes, 
including those expressible in analytical form (e.g. 
example 4.2), and those that can be expressed only as a 
table of amplitude vs time. No limitation exists due to 
discontinuities in waveforms. Integrations can fre- 
quently be carried out by normal analytical methods, 
but it is particularly convenient to use the power of 
digital computers to perform many of the more 
laborious integrations. 

It is necessary to program the noise calculations 
differently depending upon whether the system is time- 
invariant, or is a gated-integrator or a more complicated 
time-variant system. However, once such a program is 
written, it can handle a wide range of basic signal 
shapes. The structure of the program required to handle 
the gated-integrator system will be described in the 
following paragraphs using the illustration of fig. 9. 
The step-by-step procedure followed in this calcu- 
lation duplicates the mental procedures involved in 
forming R(t);  as such, it may serve to review the 
method for those readers who encountered problems 
in constructing R(t) in the foregoing examples. 

The program requires that an array of N locations 
be loaded with N values representing the signal ampli- 
tude entering the gated-integrator in each of N equal 

I MEASUREMENT [ TIME 

GATED INTEG. 

5 ,%1 I 
15 10 

. ' ~ - I  2 5 INTEGRATION 
:. " : I  I . -  _ _ s - -  

_{ j 

Fig. 9. I l lustrat ing the steps involved in a gated- integrator  
sys tem analysis p rogram.  
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time intervals At. The total time-span represented by 
the array (i.e. NAt) must cover all significant parts of 
the signal. The array may be loaded manually in cases 
where the waveform cannot be represented as a 
sequence of analytical functions, or loaded by sub- 
programs if analytical representations are possible. In 
fig. 9, the top diagram represents the values loaded into 
the a r r a y - i n  this case only 15 locations (i.e. N= 15) 
are used, but a much larger number is used in practice. 

The program also requires knowing the integration 
time T I used in the gated integrator. For the purpose 
of the calculation, TI is considered as N~ intervals each 
of At duration. In fig. 9, N I is 10. 

The first main sequence in the program consists of 
establishing a new data-array with N~+N elements 
representing the step-noise residual function R(t). To 
do this, the integration interval is, in effect, slid over 
the signal waveform, one step at a time, from just 
overlapping the start of the signal waveform to just 
overlapping its end (see fig. 9). At each step, digital 

integration of the signal waveform over the signal 
intervals within the integration period is carried out, 
and the result is stored in the appropriate location in 
the R(t) array. After N+NI steps, the R(t) array is 
fully loaded. 

Once the R(t) array is loaded, it is simple to carry 
out the digital integration of JR(t)] 2 over the full span 
of R(t) while leaving the R(t) array undisturbed. After 
this operation, the value of the integral of [R'(t)] 2 is 
caculated by performing the summation of [R(t,-I-1) 
- R  (t,)] 2. Finally, the integral S of the signal waveform 
over the interval TI is calculated, the values of [R(t)] 2 
and [R' (t)] 2 are divided by S 2, and the appropriate time 
normalization is applied to give the step- and delta- 
noise indices. 

Programs have been developed for several shaping 
systems, and noise indices have been calculated. Fig. 10 
shows the values obtained for many types of shaper, 
including some of the examples used in our earlier 
description. We will now discuss some of these results. 

PULSE.SHAPES 

1. R C INTEG.-DIFF. 
(TIME-INVARIANT) 

2. TRAPEZOID 
[T|ME-IN~/ARiANT/ 

3. TRAPEZOID: SQUARE 
PULSE (T} INTO GATED 
INTEGRATOR ITt) 

4. TRIANGLE: BIPHASE 
PULSE INTO GATED 
INTEGRATOR 

5. GAUSSIAN X7e 7(1"XI 
(TIME-INVARIANT) 

6. GAUSSIAN x7e 7(1-X) 
INTO GATED 
INTEGRATOR 

7. GAUSSIAN X4e 4(1-X) 
(TIME-INVARIANT) 

8 .  R C DIFF. (%a/3) 
v 

INTO GATED 
INTEGRATOR (TI = 0-0) 

9. TRIANGLE, AUTO- 
CORRELATED THEN INTO 
GATED INTEGRATOR 
TI=2 ~[0 ; 0"0 =ApEAK 

10. GAUSSIAN, AUTO- 
CORRELATED THEN INTO 
GATED INTEGRATOR 
T[=2 0. 0 , 0"0=GAUSSIAN 
PEAK 
11. TRAPEZOID: SQUARE 
PULSE INTO GATED 
INTEGRATOR, PULSE 
WIDTH SWITCHED FROM 
T I TO T I N A t  AT 
START OF SIGNAL 

NS2> 2 OUTPUT SIGNAL <: < N / i  :> 

1 .87T0  1'87/"(  0 

0"2 +'1+0-3 1 . ~ 4  1 
0"1 0"3 

TI T 3 2 /T  

_¢4"x,_ ~0 
0"0 6/0"0 

0"67'1"0 2 .53 /0 -0  

0"0 2 0 ,  0"o 4, ,0 

0.90 0"0 2 . 0 4 /  
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1 .08 t .  0 1 .48 /0"0  
Tx 

0 .92 t .  0 1.66/,1. 0 
T! 

T 

T, --~h- Tl/3 ~' 
3 \  T /  

Fig. 10. Summary of noise indices for typical systems. 

6. Perspective on pulse-shapers 

The results given in fig. 10 include a number of time- 
invariant shapers (1, 2, 5, 7), combinations of these 
with gated-integrators (3, 4, 6, 8), with a switched 
differentiator (11), and examples of autocorrelation of 
the signal combined with gated-integrator (9, 10). In 
these latter cases, the signal was processed by carrying 
out the integration: 

otS(t) So(t) dt, 

where 
Tis the total signal duration. 
S(t) is the signal (processed by the appropriate network). 
So (t) is a reference waveform whose shape is the same 

as the signal, triggered to start at the same time 
as it. 

As this method appears to give greatest weight to 
information when the signal has its maximum value, 
intuition suggests that some improvement in signal/ 
noise might result. The fast analogue-multiplication 
required for pulse-shaping of this type to be feasible 
can now be performed if justified by signal/noise 
performance improvements. 

The intriguing simplicity of these noise calculations 
tends to hide the fact that correct choice of a pulse- 
shaper for a given application depends on good 
judgement between a variety of partially conflicting 
requirements, and also requires a knowledge of the 
engineering problems involved in achieving a certain 
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pulse-shape. Injection of  some of  these factors is 
necessary if the results given in fig. 10 are to be useful. 
To re-emphasize the various important factors, we 
restate them here from an earlier section of the paper: 

1) Signal/noise performance. 
2) Counting-rate behavior. 
3) Sensitivity of output pulse-amplitude to rise-time 

fluctuations in the detector signal. 
4) Suitability of output-pulse for feeding a pulse- 

height analyzer. 

And we add: 

5) The pulse-shape must be realizable with simple 
circuits using elements that do not introduce signal 
distortions of  an undesirable nature. 

Noise analysis is directed only at item (1), but inti- 
mately involves item (2) as the duration of any wave- 
form in the system directly determines the probability 
of pulse pile-up at high counting-rates. Item (3) requires 
a pulse-shape possessing a flat (or nearly flat) top for a 
time greater than the maximum detector signal rise- 
time variation. For many applications, however, 
detector signal rise-time fluctuations are negligible, and 
need not be considered as an important factor in the 
choice of pulse-shaper. Item (4) also requires a flat- 
topped pulse, although the use of  pulse-stretchers 
capable of responding to narrow pulses generally makes 
this factor of  minor importance. The final item (5) is a 
complex one involving considerable knowlegde of  
circuit elements. However, one major consideration 
relates to delay-lines - the only circuit elements capable 
of  producing rectangular pulses, and therefore a 
necessary component if several of the pulse-shapes of 
fig. 10 are to be realized. While delay-lines are useful in 
many applications, their deficiencies limit their use to 
non-critical systems. Critical systems are better realized 
using stable components like resistors and capacitors - 
even inductors should be avoided due to their imper- 
fections, including temperature instability. 

Examination of the results in fig. 10 confirms, in 
every case, that the step-noise index is proportional to 
the time-scale of the pulse-shaper, while the delta-noise 
index is inversely proportional to it. Choice of  the 
actual time-scale depends on the relative sizes of the 
sources of  step- and delta-noise (n s and ha). Ideally, if 
delta-noise is dominant at a given time-scale, the 
time-scale can be lengthened to reduce delta-noise until 
the step-noise (which is increasing for larger time-scales) 
becomes equal to it. On this basis, an optimum time- 
scale can be achieved for each type of  shaper. In many 
cases, however, this is an impractical procedure as the 
time-scale required to achieve equality of  delta- and 

step-noise is very long, and the resulting pile-up prob- 
lems at high counting-rates are intolerable. Therefore, 
the main emphasis in choosing a pulse-shaper is usually 
to choose that shaper giving the best delta-noise, while 
restricting the time-duration of any signal in the system 
to an acceptable value from the point of view of 
counting rate. 

The results of fig. 10 are best appreciated by com- 
paring some of the cases. For example, the traditional 
single-RC integrator-differentiator  combination (1) 
appears at first sight to exhibit superior delta-noise 
performance to that exhibited by the 7th- or 4th-order 
Gaussian shapes*, since the calculated value of  ( N  2) is 
greater in cases (5) and (7) than in case (1). However, 
the long tail on the waveform of (l), compared with 
either (5) or (7), causes severe signal pile-up effects at 
high counting-rates. For this reason a larger value of 
ro can be used with (5) or (7) than with (1), thereby 
reducing the delta-noise well below that of case (1), 
while retaining an adequate value of (N~).  This is one 
example of a general rule for time-invariant systems, 
namely that symmetrical waveshapes always result in 
less delta-noise than asymmetrical ones when equal 
recovery times are demanded of both. On these 
grounds, the 7th order Gaussian is preferred over the 
4th order Gaussian, but the increased circuit complex- 
ity needed for the former case may not be considered 
to be justified. 

Another useful comparison is that between a gated- 
integrator fed by a Gaussian-shaped pulse (6), and the 
Gaussian-shaper with no gated-integrator (5). A 
number of interesting features emerge from this com- 
parison: 

1) The counting-rate behavior will be the same if the 
same value of  the Gaussian peaking-time is used. 

2) Delta-noise is significantly better for the gated- 
integrator, but the step-noise is worse. Where delta- 
noise is dominant, an improvement in signal/noise can 
be realized by using the gated-integrator. 

3) The nearly flat region at the measurement time 
of the gated-integrator output makes the output 
insensitive to detector signal rise-time fluctuations. The 
integration period T~ can readily be chosen to produce 
an adequately flat-top to cope with any reasonable 
amount of rise-time fluctuation in the detector signal. 
As shown by Radeka3), this feature makes this type 
of  shaper very attractive for high-energy ?-ray spectro- 
scopy using large germanium detectors. 

We have already compared the behavior of  the 

* These shapes are produced by 1 RC differentiator and 7 or 
4 RC integrators respectively. 
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switched-differentiator-shaper (11) with that of the 
gated-integrator (3), and have shown that a severe 
delta-noise penalty results from the switching opera- 
tion. Despite this, as was shown earlier, the switched 
differentiator can be useful in circumstances that arise 
in pulsed-beam accelerator experiments. 

Finally, comparison of cases (10) and (6) indicates 
some possible value in the auto-correlation method. 
The auto-correlation shaper (10) is substantially better 
in its step-noise performance, while exhibiting almost 
the same delta-noise performance as the gated-inte- 
grator (6). In systems where step-noise is a serious 
factor, the benefits of the auto-correlation method may 
justify the circuit complexity required for its execution. 
At the present time, no system of this type is in use, 
and the possible difficulties of  analogue multiplication 
have not been evaluated. 

7. Conclusion 

The simplicity of noise calculations using this method 
has been clearly demonstrated here. For the unbeliever, 
we recommend an attempt to carry out similar calcula- 
tions by the time-honored method of Fourier-trans- 
forming the waveforms, and integrating in the fre- 
quency domain. Furthermore, the older methods are 
unable to deal with time-variant systems, whereas they 
can be handled relatively easily using the new technique. 
A number of practical advantages and disadvantages 
of the time-variant methods are pointed out in the text. 

It appears that the analysis technique should find 
much wider application, particularly as it provides 

clear pictures of the basic resasons for superior or 
inferior performance of systems. Perhaps the simplicity 
of the method, and the physical basis for the calcula- 
tions, will encourage physicists to realize that there are 
sound reasons for the various techniques employed to 
optimize pulse-shapes in amplifiers used for nuclear 
experiments. 

It is a pleasure to acknowledge many discussions 
with D. Landis, J. Walton, B. Leskovar, and partic- 
ularly those with V. Radeka. Stimulation for writing 
this account came from conversations with physicists 
baffled by the supposed "recipes" of engineers; 
J. Jaklevic and R. Pehl must bear some responsibility 
in this regard. 
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